Classical to quantum transfer of optical vortices.
نویسندگان
چکیده
We show that an optical vortex beam, implemented classically, can be transferred to the transverse amplitude of a heralded single photon. For this purpose we have relied on the process of spontaneous parametric downconversion (SPDC) for the generation of signal and idler photon pairs, using a pump in the form of a Bessel-Gauss (BG) beam with orbital angular momentum (specifically, with topological charge l = 1 and l = 2). We have designed our source so that it operates within the short SPDC crystal regime for which, the amplitude and phase of the pump may be transferred to a heralded single photon. In order to verify the vortex nature of our heralded single photon, we have shown that the conditional angular spectrum and the transverse intensity at the single-photon level match similar measurements carried out for the pump. In addition, we have shown that when our heralded single photon is diffracted through a triangular aperture, the far-field single-photon transverse intensity exhibits the expected triangular arrangement of intensity lobes associated with the presence of orbital angular momentum.
منابع مشابه
Diffusion-induced decoherence of stored optical vortices
We study the coherence properties of optical vortices stored in atomic ensembles. In the presence of thermal diffusion, the topological nature of stored optical vortices is found not to guarantee slow decoherence. Instead the stored vortex state’s decoherence is surprisingly larger than the stored Gaussian mode. Furthermore, calculation of the coherence factor shows that the center of the store...
متن کاملGinsburg-Pitaevski-Gross differential equation with the Rosen-Morse and modified Woods-Saxon potentials
In this paper, we consider non-linear Ginsburg-Pitaevski-Gross equation with the Rosen-Morse and modifiedWoods-Saxon potentials which is corresponding to the quantum vortices and has important applications in turbulence theory. We use the Runge- Kutta-Fehlberg approximation method to solve the resulting non-linear equation.
متن کاملQuantum signatures of charge flipping vortices in the Bose-Hubbard trimer.
In this work we study quantum signatures of charge flipping vortices, found in the classical discrete nonlinear Schrödinger trimer, by use of the Bose-Hubbard model. We are able to identify such signatures in the quantum energy eigenstates, for instance when comparing the site amplitudes of the classical charge flipping vortices with the probability distribution over different particle configur...
متن کاملGain optimization of the optical waveguide based on the quantum box core/shell structure
In order to implement an integrated optical quantum circuit, designing waveguides based on the quantum box is of prime importance. To do this we have investigated optical waveguide both with and without optical pumping. The rate of absorption and emission using an array of AlGaAs/GaAs quantum box core/shell structure in the optical waveguide with various pumping intensities has computed. By con...
متن کاملStrong Optical Filed Intensity Improvement Introducing InGaAsP Quantum Wells in InP Nanocavity
This paper presents the optical characteristics of a quantum well doped InP nanocavity.The resonance wavelength of the nanocavity and the optical field intensity is calculated before and after presence of the quantum wells. The resulting huge filed intensity of about 1.2×108 respect to the incident field is the effect of quantum wells placed in vicinity of center of nanocavity.
متن کاملGain optimization of the optical waveguide based on the quantum box core/shell structure
In order to implement an integrated optical quantum circuit, designing waveguides based on the quantum box is of prime importance. To do this we have investigated optical waveguide both with and without optical pumping. The rate of absorption and emission using an array of AlGaAs/GaAs quantum box core/shell structure in the optical waveguide with various pumping intensities has computed. By con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 22 17 شماره
صفحات -
تاریخ انتشار 2014